
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2000 

Techniques for Forecasting the Cessation of Lightning at Cape Techniques for Forecasting the Cessation of Lightning at Cape 

Canaveral Air Station and the Kennedy Space Center Canaveral Air Station and the Kennedy Space Center 

Michael W. Holmes 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Meteorology Commons 

Recommended Citation Recommended Citation 
Holmes, Michael W., "Techniques for Forecasting the Cessation of Lightning at Cape Canaveral Air Station 
and the Kennedy Space Center" (2000). Theses and Dissertations. 4806. 
https://scholar.afit.edu/etd/4806 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4806&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/190?utm_source=scholar.afit.edu%2Fetd%2F4806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4806?utm_source=scholar.afit.edu%2Fetd%2F4806&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


www.manaraa.com

TECHNIQUES FOR FORECASTING THE 
CESSATION OF LIGHTNING AT CAPE 

CANAVERAL AIR STATION 
AND THE KENNEDY SPACE CENTER 

THESIS 

Michael W. Holmes, First Lieutenant, USAF 

AFIT/GM/ENP/00M-08 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

DISTRIBUTION UNLIMITED 

PHC Q'SJAXOT IHS 20001113 OH 



www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U. S. Government. 



www.manaraa.com

AFIT/GM/ENP/OOM-08 

TECHNIQUES FOR FORECASTING THE 

CESSATION OF LIGHTNING AT CAPE CANAVERAL AIR STATION 

AND THE KENNEDY SPACE CENTER 

THESIS 

Presented to the Faculty 

Department Engineering Physics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Meteorology 

Michael W. Holmes, B. S. 

First Lieutenant, USAF 

March 2000 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



www.manaraa.com

AFIT/GM/ENP, '00M-08 

TECHNIQUES FOR FORECASTING THE 

CESSATION OF LIGHTNING AT CAPE CANAVERAL AIR STATION 

AND THE KENNEDY SPACE CENTER 

Michael W. Holmes, B.S. 
First Lieutenant, USAF 

Approved: 

Gary R. Huffines (Chairman) date 

Cecilia A. Miner (Member) date 

William F. Bailey (Member) date 



www.manaraa.com

Acknowledgements 

There are a number of people who directly contributed to the successful 

completion of this research project. Most importantly is the support and encouragement I 

have received from my family and especially my loving wife Shannon. As she's so often 

done in the past, she has patiently endured my long absences from home with a tolerance 

that I could only dream about and when we did cross paths, she only had kind words of 

encouragement to offer. She is beautiful inside and out and I wouldn't be where I am 

today without her. My son Noah, while only 3 years old, was also instrumental in the 

completion of this project as a fantastic stress reliever. He never placed much priority on 

the books and papers I would be forever reading, and as a result, didn't hesitate to remove 

them from my hands and insist that I play with him. 

On a more professional note, I would like to thank my thesis committee members, 

Lieutenant Colonel Cecilia Miner, and Dr. William Bailey and especially my thesis 

chairman, Major Gary Huffines who always provided guidance when asked, but more 

importantly, let me conduct the research as I saw fit. This large degree of freedom made 

this research effort the single most valuable learning experience I have had here at AFIT. 

I would also like to thank the rest of the AFIT faculty, Pete Rahe, and of course my 

fellow students who despite their best intentions didn't always provide intelligent 

answers to my questions, but were always the model of consistency when it came to 

comic relief. 

Michael W. Holmes 

in 



www.manaraa.com

Table of Contents 

Acknowledgments iii 

Table of Contents iv 

List of Figures vi 

List of Tables viii 

Abstract ix 

1. Introduction 1 

1.1 Background 1 
1.2 Problem Statement and Objective 2 
1.3 Overall Approach 2 

2. Literature Review 3 

2.1 Convective Lifecycle of a Thunderstorm 3 
2.2 Lightning 5 

2.2.1 Cloud Electrification 5 
2.2.2 The Lightning Flash 6 

2.2.2.1 Negative Cloud to Ground Lightning 6 
2.2.2.2 Positive Cloud to Ground Lightning 8 

2.2.3 National Lightning Detection Network 9 
2.3 Weather Surveillance Radar .9 

2.3.1 Modes of Operation 10 
2.3.2 Volume Coverage Patterns 11 
2.3.3 Reflectivity Products 11 
2.3.4 Vertically Integrated Liquid Water Product 13 

2.4WATADS 13 
2.5 Radar and Lightning Studies 14 

3. Methodology ....18 

3.1 Introduction 18 
3.2 Geographic Region of Interest 18 
3.3 Identification of Cases 19 

3.3.1 Applying Climatology 19 
3.3.2 Identification Using NLDN Data 20 
3.3.3 Further Identification Using WSR-88D Data 23 

3.4 Extraction of Specific Lightning Parameters 23 
3.5 Extraction of Specific WSR-88D Parameters 25 

iv 



www.manaraa.com

3.5.1 Data Extraction Problems 26 
3.6 Complete Data Set 27 

4. Analysis and Results 29 

4.1 Introduction 29 
4.2 Analysis Tools 29 

4.2.1 x-y plots 29 
4.2.2 Least Squares Line 30 
4.2.3 Standardized Residuals 31 
4.2.4 Coefficient of Determination 32 
4.2.5 Standard Deviation 33 
4.2.6 Evaluation of Forecast Skill 33 

4.3 Simple Linear Regression Analysis 35 
4.3.1 Analysis of Cases 36 
4.3.2 Skill Analysis of Simple Linear Regressions 49 

4.4 Multiple Linear Regressions 54 

5. Summary and Conclusions 58 
5.1 Recommendations for Further Research 60 

Bibliography 62 

Appendix A: IDL Program that calculates the number of flashes per day 65 

Appendix B: IDL Program generates GIF images of lightning flashes 67 

Appendix C: IDL Program that generates a time series plot of a thunderstorm 70 

Vita 78 



www.manaraa.com

List of Figures 

Figure Page 

la. Cumulus stage of development 4 
lb. Mature stage of development 4 
lc. Dissipating stage of development 4 
2. A generalization of the charge separation within a thunderstorm 7 
3.NLDNMap 10 
4. Scan strategy of Volume Coverage Pattern (VCP) 21 12 
5. Scan strategy of Volume Coverage Pattern (VCP) 11 13 
6. Geographic region of interest 19 
7. Example of a large scale GIF image used to identify thunderstorm cases 22 
8. Example of a small scale GIF image used to isolate each thunderstorm case...25 
9. Example of a time series plot 26 

0. Box and whiskers plot 36 
la. x-y Plot of Peak VIL vs. VIL dt 38 
lb. x-y Plot of Peak Reflectivity vs. Reflectivity dt 38 
lc. x-y Plot of Peak Flash Rate vs. Peak Flash Rate dt 38 
Id. x-y Plot of Peak Negative Flash Rate vs. Peak Negative Flash Rate dt 38 
le. x-y Plot of Peak Positive Flash Rate vs. Peak Positive Flash Rate dt 39 
If. x-y Plot of Maximum Peak Current vs. Maximum Peak Current dt 39 
2a. Standardized Residual Plot for VIL Case 40 
2b. Standardized Residual Plot for Reflectivity Case 40 
2c. Standardized Residual Plot for Peak Flash Rate Case 40 
2d. Standardized Residual Plot for Peak Negative Flash Rate Case 41 
2e. Standardized Residual Plot for Peak Positive Flash Rate Case 41 
2f. Standardized Residual Plot for Maximum Peak Current Case 41 
3a. Logarithmic Plot of Peak VIL vs. VIL dt 45 
3b. Logarithmic Plot of Peak Reflectivity vs. Reflectivity dt 45 
3c. Logarithmic Plot of Peak Flash Rate vs. Peak Flash Rate dt 45 
3d. Logarithmic Plot of Peak Neg Flash Rate vs. Peak Neg Flash Rate dt 45 
3e. Logarithmic Plot of Peak Pos Flash Rate vs. Peak Pos Flash Rate dt 46 
3f. Logarithmic Plot of Max Peak Current vs. Max Peak Current dt 46 
4a. Comparison of Forecast vs. Observation for VIL Case 47 
4b. Comparison of Forecast vs. Observation for Reflectivity Case 47 
4c. Comparison of Forecast vs. Observation for Peak Flash Rate Case 47 
4d. Comparison of Forecast vs. Observation for VIL Peak Neg Flash Rate 47 
4e. Comparison of Forecast vs. Observation for VIL Peak Neg Flash Rate 48 
4f. Comparison of Forecast vs. Observation for VIL Max Peak Current 48 
5a. Skill of VIL Based Regression vs. Climatology 50 
5b. Skill of Reflectivity Based Regression vs. Climatology 50 
5c. Skill of Peak Flash Rate Based Regression vs. Climatology 51 
5d. Skill of Peak Neg Flash Rate Based Regression vs. Climatology 51 
5e. Skill of Peak Pos Flash Rate Based Regression vs. Climatology 52 

VI 



www.manaraa.com

15f. Skill of Max Peak Current Based Regression vs. Climatology 52 
16. Skill of Each Multiple Linear Regression vs. Climatology 57 

vn 



www.manaraa.com

List of Tables 

Table Page 

1. Description of lightning parameters 24 
2. Description of radar parameters 27 
3. Complete data set 28 
4. Simple linear regression variables 37 
5. Simple linear regression variables distinguished by thunderstorm type 43 
6. Summary of skill values for each simple linear regression 53 
7. Summary of skill values for each multiple linear regression 56 

vin 



www.manaraa.com

AFIT/GM/ENP/OOM-08 

Abstract 

The focus of this research effort is directed toward identifying new methods of 

forecasting the cessation of lightning along the Central Atlantic Coast of Florida. Cloud- 

to-ground lightning flashes place Air Force (AF) personnel and assets at risk almost daily 

at this location. Providing a more accurate method of forecasting the cessation of 

lightning would allow for safer and more efficient execution of AF operations. 

A data set consisting of 40 thunderstorm cases was identified within a 90 nautical 

miles (nmi) region surrounding the Melbourne, Florida WSR-88D (KMLB) site. Each 

case falls between the months of May and September and the years of 1995 through 

1997. Simple and multiple linear regression models are built using this dataset. 

Variables included max Vertically Integrated Liquid water (VIL), max reflectivity, max 

peak current, peak cumulative flash rate, peak negative flash rate, and peak positive flash 

rate. Results indicate that three of the simple linear regression models to some extent 

accurately represent the data. Additionally, when the data set is separated by 

thunderstorm cell type (multi or single) and cell specific regressions are built, results 

indicate that the regressions based on the single-cell data set produce a substantial 

increase in forecast skill compared to that of climatology. In fact, some regressions are 

shown to improve forecast accuracy by 90 % over that of climatology. Moreover, 

multiple linear regression models are shown to produce similar results and further 

reinforce the notion that each thunderstorm cell type (multi or single) behaves 

substantially different from the other with respect to forecasting the cessation of 

lightning. 

IX 
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TECHNIQUES FOR FORECASTING THE CESSATION OF LIGHTNING 

AT CAPE CANAVERAL AIR STATION AND THE KENNEDY SPACE 

CENTER 

1. Introduction 

1.1       Background 

The National Aeronautics and Space Administration (NASA) Kennedy Space 

Center (KSC) located on the Central Atlantic Coast of Florida is recognized as an area 

having among the highest lightning flash densities in the country (Orville 1991; Orville 

and Silver 1997). The high frequency of lightning places over 25,000 employees and 

over 7 billion dollars in facilities at risk each time a thunderstorm passes over the region 

(Boyd et al. 1995). With these points in mind, NASA has placed a high priority on 

accurately forecasting the initiation and cessation of lightning since it is critical to the 

safe and timely execution of ground and launch operations. 

A number of previous research efforts have focused on identifying when a 

convective cloud will produce its first lightning flash, but little attention has been given 

to identifying when an existing thunderstorm will cease to produce lightning. 

Forecasting the cessation of lightning is equally as important as forecasting the initiation 

of lightning since ground, air, and launch operations remain on hold throughout the 

lifecycle of a nearby thunderstorm. 

Analyzing some of the techniques used in forecasting the initiation of lightning 

may provide some insight into forecasting the cessation of lightning. In addition, some 
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unique and previously untried methods may also prove to be useful in forecasting the 

cessation of lightning and are the focus of this research effort. 

1.2 Problem Statement and Objective 

Starting from the premise that a convective cloud has generated sufficient charge 

separation to initiate at least one lightning flash, the problem is then identifying when this 

thunderstorm will cease to produce lightning. The 45th Weather Squadron at the KSC and 

the United States Air Force (USAF) weather community in general would benefit if this 

problem were solved. Thus, the objective of this research effort is to provide an accurate 

method of forecasting the cessation of lightning. 

1.3 Overall Approach 

Forecasting the cessation of lightning, despite its importance to the aviation 

community has received very little direct attention from researchers. In fact, only one 

published research effort has focused directly on forecasting the cessation of lightning 

(Hinson 1997), and it produced mixed results. The major limiting factor to this lone 

research effort was the sample size. Hinson's analysis method only allowed him the 

opportunity to analyze three thunderstorm cases, which makes it difficult to draw any 

statistically significant results. Some of his findings however, were compelling and are 

discussed in the literature review chapter of this thesis along with a description of his 

methodology.   Ultimately, the analysis method and time restraints limited the number of 

cases he could evaluate. With this in mind, a major focus of this research effort is to 

decrease the analysis time and increase the number of cases. 
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2.      Literature Review 

2.1       Convective Lifecycle of a Thunderstorm 

The convective lifecycle of a thunderstorm in an environment of weak vertical 

wind shear can be broken up into three stages (Byers and Braham 1949). First is the 

cumulus stage (Fig. la). During this stage of development, updrafts on the order of 1 - 

10 ms"1 are the dominant feature throughout the cell (Bluestein 1993). As the 

precipitation particles continue to grow within the convective cell, they eventually 

become so heavy that the updraft can no longer sustain their weight. Subsequently, the 

precipitation particles begin to fall, initiating a downdraft. This downdraft is then 

enhanced due to evaporative cooling as the precipitation particles pass through 

unsaturated air making the air more negatively buoyant. The point at which precipitation 

particles reach the surface marks the transition from the cumulus stage to the mature 

stage (Fig. lb). The mature stage is characterized by the presence of both an updraft and 

a downdraft. In this idealized model, as precipitation continues to fall, the updraft is 

essentially completely overtaken by the downdraft. This point marks the transition from 

the mature stage to the dissipating stage (Fig. lc) and can be characterized by a steady 

decrease in the rate of precipitation at the surface. 

The lifecycle of a multi-cell thunderstorm is very similar to that of a single-cell 

thunderstorm. Each cell that develops in a multi-cell thunderstorm behalves individually 

as does a single-cell thunderstorm. The distinction between the two occurs in the 

dissipating stage of the lifecycle.   As the downdraft collides with the surface of the earth, 

it disperses horizontally. In a multi-cell thunderstorm, this horizontal dispersion of the 
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downdraft converges with another boundary (sea breeze, outflow from another storm, 

etc). Since this convergence zone is bounded below by the surface of the earth, the only 

direction that the air can move is upward, spawning a new convective cell. This process 

of cell regeneration continues until thermodynamic conditions are no longer favorable, or 

convergence between airmasses ceasees. In the single-cell case, the downdraft collides 

and disperses horizontally just as in the multi-cell case. However, there is either no 

boundary present at the surface for the storm outflow to converge with or the 

convergence is not sufficient to initiate another convective cell, ultimately, indicating the 

death of the cell and the entire thunderstorm. 

2.2      Lightning 

2.2.1    Cloud Electrification 

Fundamentally, lightning flashes are a direct result of the separation between 

strongly positive and negative charged regions that exist in some convective clouds. The 

processes by which the charges and subsequent separations are generated are not fully 

understood and are currently an area of active research. There are, however, two basic 

theories used to explain the dipole nature of thunderstorms (Uman 1987; Saunders 1993). 

The first theory focuses on cloud electrification due to convective processes. 

Once convection is initiated, positively charged fair weather ions are picked up and 

carried aloft into the cloud where it is thought they then attach themselves to water 

droplets (Saunders 1993). These positively charged water droplets are then carried 

higher into the cloud by the ongoing convection. A negatively charged screening layer is 

generated along the outer boundary of the cloud and carried downward by the convective 

downdrafts. The result of this process is the separation of charged regions within the 
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cloud. If the positive and negative charged regions within the cloud are sufficiently large, 

a lightning flash may occur. 

The second major theory focuses on particle charging mechanisms and can be 

further broken into inductive and noninductive charging theories. Both theories suggest 

that charged particles are generated as a result of collisions with one another inside the 

cloud. The processes differ in that the inductive charging mechanism requires the 

presence of a vertical electric field, while the noninductive mechanism does not. There 

are a number of possible noninductive charging mechanisms, but only one (grauple-ice 

mechanism) has been duplicated in laboratory work (MacGorman and Rust 1998) and has 

been shown to be consistent with observations (Rutledge and Carey 1997). 

2.2.2   The Lightning Flash 

2.2.2.1 Negative Cloud to Ground Lightning 

The majority of lightning flashes in thunderstorms lower a net negative charge to 

the ground. In fact, Orville (1994) found in a study of cloud-to-ground (CG) flash 

characteristics conducted in the United States over a six-year period that more than 90% 

of all thunderstorms lowered a net negative charge to the surface. A generalized picture 

of the charge separation in a thunderstorm that produces a negative CG discharge is 

illustrated in Figure 2. 
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Surface ///^/////y////^////// 
Figure 2. A generalization of the charge 
separation within a thunderstorm. (Adapted 
from Uman 1987) 

Once sufficiently large positive and negative regions have been created within the 

cloud a coronal discharge may occur. A coronal discharge that initiates from the positive 

or negative charged region of the cloud is the beginning of a positive or negative 

lightning flash, respectively. The remainder of this section specifically focuses on the 

lifecycle of a single negative CG flash. An outline of this process is described below and 

is meant to provide a general overview of the process. For a detailed discussion of all 

processes involved in a single lightning CG flash, refer to Uman (1987) or MacGorman 

and Rust (1998). 

When the breakdown potential of the free atmosphere is reached, a coronal or 

point discharge is initiated from the negatively charged region of the cloud into the free 



www.manaraa.com

atmosphere. Once the breakdown potential is reached, negative charge begins lowering 

to ground in steps. The sum of these steps is called the stepped leader. Each step is 

approximately 50 m in length and travels at approximately 105 m s"1 (Uman 1987). As 

the stepped leader approaches the ground, the electric field at the surface begins to build 

on tall or irregularly shaped objects until the breakdown potential is reached. An upward 

moving positive discharge is then initiated and is termed the attachment process or 

attachment leader. When the attachment leader meets with the stepped leader, the 

ionized path is completed between the cloud and the ground and a negative charge is 

transferred to the earth. At this point a return stroke is initiated. It travels from the 

ground back up the ionized path to the source region of charge within the cloud. Upon the 

completion of the return stroke, if sufficient charge is still available in the charged region 

of the cloud, then a dart leader will travel down the previously ionized path and initiate 

another return stroke. This dart leader and subsequent return stroke may repeat several 

times and is responsible for the flicker of lightning as seen by the human eye. 

2.2.2.2 Positive Cloud to Ground Lightning 

Less than 10 percent of all CG flashes lower a net positive charge to the surface of 

the earth (Orville 1994). One of the main differences between positive CG flashes and 

negative CG flashes is that positive flashes can have peak currents that are much larger 

than those of negative CG flashes and they generally are more frequent as you move to 

higher latitudes, higher altitudes or during the winter season (Uman 1987). However, the 

discharge process are similar. 
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2.2.3    National Lightning Detection Network 

The National Lightning Detection Network (NLDN) was established in 1987 by 

combining three previously independent lightning detection networks into one all 

encompassing lightning detection network that covers the entire United States 

(Cummings et al. 1998).   In 1995, an upgrade of the NLDN sensors was completed. 

Following the upgrade, the NLDN was comprised of two distinct lightning detection 

sensors that were to be used concurrently. The two sensors are the Time of Arrival (TOA) 

and the Improved Accuracy from Combined Technology (IMPACT) sensor that utilized 

both a TOA sensor and a Magnetic Detection Finder (MDF) sensor. There are 59 TOA 

sensors and 47 IMPACT sensors distributed over the continental United States (Fig. 3). 

Cummings et al. (1998) estimated that after the 1995 upgrade the location accuracy 

increased to 0.5 km and the flash detection efficiency increased to 80-90% over most of 

the United States. An evaluation of the NLDN conducted over the Northeastern United 

States during and following the upgrade indicated that there was a modest increase in 

detection efficiency when compared to the network prior to the upgrade (Idone et al 

1998). 

2.3      Weather Surveillance Radar 

The Weather Surveillance Radar 1988 Doppier (WSR-88D) also know as the 

Next Generation Weather Radar (NEXRAD) was commissioned in 1988 and was in 

operation at the Melbourne, Florida, site in 1994. The WSR-88D is a horizontally 

polarized, S band radar that transmits at 3 GHz, and has a wavelength of 10.71 cm 

(Rinehart 1997). This radar offers a wide range of products that can be used to evaluate a 
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storm. However, only two are used in this research effort, specifically, the base 

reflectivity and VIL. Both are discussed in detail in later sections. 

NLDN sensor locations 

• IMPACT sensors 
A TOA(LPATS) sensors 

Figure 3. NLDN map. Depicts the geographic location of the IMP AC and TO A 
sensors over the continental United States (From Cummings et al. 1998). 

2.3.1    Modes of Operation 

The WSR-88D operates in two different modes, the most important of which is 

the precipitation mode, which utilizes the most effective scan strategies to identify 

potentially threatening meteorological events. All of the radar data gathered in this 

research effort was taken while the WSR-88D was in the precipitation mode. The second 

mode that the WSR-88D can operate in is the clear air mode. It is more sensitive than the 

precipitation mode and is mainly useful in identifying wind speeds on days when 

meteorological targets are not present. 

10 
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2.3.2 Volume Coverage Patterns 

Two volume coverage pattern (VCP) scan strategies are available when the WSR- 

88D is in precipitation mode. The first is VCP21, which collects data at each of the 

following elevation scans; 0.5, 1.45, 2.4, 3.35, 4.3, 6.0, 9.9, 14.6, 19.5 degrees (Fig. 4). 

This is the scan strategy that was utilized by the Melbourne radar site (KJVILB) prior to 

1997 (Gremillion and Orville 1999). This particular scan strategy samples the lower 

levels completely. However, there are large gaps between 4.3 and 19.5 degree scans, 

which could contain potentially important meteorological information. The second scan 

strategy available in precipitation mode is VCP11 (Fig. 5). In 1997 the Melbourne radar 

site switched to this scan strategy which fills many of the gaps between 4.4 and 19.5 

degree elevation slices that occur in the VCP21 scan strategy. 

2.3.3 Reflectivity Products 

The WSR-88D generates a number of products that can be used to interpret 

various details within a storm. Of all the products, the one most used by researchers and 

operational forecasters is the base reflectivity product. The base reflectivity product 

displays the echo intensity of a particular target based on how much electromagnetic 

radiation is returned from that target back to the antenna. One base reflectivity product is 

returned for each elevation scan that is accomplished and can be requested in 0.54, 1.1, or 

2.2 nmi resolution. It can be used to estimate rainfall and intensity, storm structure and 

identify the storms boundaries. 

11 
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Figure 4. Scan strategy of Volume Coverage Pattern (VCP) 21 
(From WSR-88D Handbook 1998). 

The composite reflectivity product is also commonly used. It is a volumetric 

product, which means that a complete volume scan must be available for it to be 

displayed. In general, it is a composite summary of the maximum observed base 

reflectivity value measured above each geographic grid point. This product is available 

every 5 to 6 minutes depending of the scan strategy being used at the time and allows the 

radar user to quickly identify and track the maximum reflectivity within the storm. 

12 
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Figure 5. Scan strategy of Volume Coverage Pattern (VCP) 11 (From WSR- 
88D Handbook 1998). 

2.3.4   Vertically Integrated Liquid Water Product 

The vertically integrated liquid water (VIL) product provides the radar user with a 

graphical representation of the liquid water content (kg m"2) that is contained within a 2.2 

x 2.2 nmi column of air above a particular geographic point. This product, like 

composite reflectivity is a volumetric product and is only available after the completion 

of a volume scan. 

2.4       WATADS 

The WSR-88D Algorithm Testing and Display System (WATADS) was built by 

the National Severe Storms Laboratory (NSSL) to facilitate after-the-fact analysis of 

WSR-88D data. It was also designed to evaluate a particular algorithm's performance 

13 
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over a specific region after adjusting the adaptable parameters. WAT ADS is a Unix 

based software package that ingests Level II archive radar data from an 8 mm tape. After 

reading in the archive Level II data, WAT ADS then processes it through the necessary 

algorithms. When the data have been completely processed, nearly all the products that 

are available to a user at a Principal User Processor (PUP) are also available through 

WATADS via the Radar Analysis and Display System (RADS). 

2.5      Radar and Lightning Studies 

Over the last two decades, weather radars operating at different power levels and 

wavelengths have been used to sample thunderstorms. One particular research use of 

these radars has been to sample thunderstorms and to correlate some radar parameter with 

the initiation of cloud electrification and a subsequent lightning flash. Florida, and more 

specifically, the Kennedy Space Center (KSC) located on the Atlantic Coast has been a 

favorite location for such lightning research given its high flash density (Orville 1991; 

Orville and Silver 1997). 

A Lightning Detection and Ranging (LDAR) network located at the Kennedy 

Space Center has been used to identify correlations with radar parameters (Lhermitte and 

Krehbiel 1979). Their research took place prior to the installation of the Melbourne, FL 

WSR-88D. They used a network of three smaller Doppler radars to perform their 

research. After two summers, they found that LDAR data are usually confined between 

an altitude of 7 to 10 km, and there was a positive correlation between the maximum 

LDAR data rate and the maximum vertical velocity, and radar reflectivity. No 

correlations were made between Doppler radar parameters and the electrification or first 

flash of lightning. 
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Other research efforts have looked at different types of precipitation particles to 

identify a possible correlation between the type of precipitation particles and the 

occurrence of lightning (Jameson et al. 1996; Lopez and Aubagnac 1997; Carey and 

Rutledge 1998). In an evaluation of three Florida thunderstorms, the onset of 

electrification was shown to begin just prior to the rapid growth of the reflectivity volume 

above the -7 degree C level (Jameson et al. 1996). In another study, temporal variations 

in the mass of small hail, grauple, and supercooled liquid water were shown to be 

coincident with variations in the flash rate (Lopez and Aubagnac 1997). 

A study of 1,257 thunderstorm cells in the Southern Plains compared the 

maximum CG flash rates with maximum values of reflectivity, VIL, and thickness of the 

reflectivity > 30 dBZ above the 0 degree C height (MacGorman and Filiaggi 1997). The 

results of the study indicated that 70% of the cells that produced CG flashes had a peak in 

the flash rate at, or slightly after, the same time as the radar inferred parameters peaked. 

The 30 dBZ thickness values by themselves correlated well with increased CG flash 

rates. In fact, 92% of the cells that had no CG flashes also had a 30 dBZ thickness less 

than 7 km, and 85% of the cells having a high CG flash rate greater than 4 min"1 also had 

a 30 dBZ thickness greater than 7 km. 

Radar reflectivity values at particular heights have also been evaluated for their 

use in identifying regions in a developing convective cell that may produce a lightning 

flash. Larsen and Stansbury (1974) suggested that the 43 dBZ precipitation cores at a 

level of 7 km plotted on a Constant Altitude Plan Position Indicator (CAPPI) were most 

likely the source regions of observed lightning. 
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A study by Buechler and Goodman (1990) proposed a new storm identification 

algorithm for the NEXRAD (Next Generation Weather Radar). Their proposed algorithm 

would recognize a storm by the appearance of a 40 dBZ echo at the -10 degree C level. 

After evaluating 15 thunderstorms that occurred over Alabama, New Mexico, and 

Florida, their results indicated a 100% probability of detection of a lightning-producing 

storm with lead-times ranging from 4 to 33 minutes. 

As mentioned earlier, very few published research efforts have looked at 

forecasting the cessation of lightning. However, in the summer of 1996 three 

thunderstorms that occurred near the Kennedy Space Center were analyzed specifically to 

look for correlations between the cessation of lightning in convective cells and radar 

reflectivity values (Hinson 1997). The 40 and 45 dBZ reflectivity values of each of the 

three convective cells were analyzed at both the -10 degree C (6000 m) and -20 degree C 

(7500 m) levels. The last indication of a reflectivity value (40 or 45 dBZ) at a particular 

level (-10 or -20 degree C) was to be an indication of the impending cessation of 

lightning within the convective cell. The time at which the last reflectivity value at a 

particular level was observed was recorded then compared to the time at which the last 

CG flash occurred as recorded by the NLDN. A time lag was then computed from each 

comparison. Results indicated that in general, the time lag between the last observed 

reflectivity echoes at the different temperature heights and the last CG flashes were 

reasonably consistent. However, the time lags observed using the 45-dBZ reflectivity 

echoes at the -10 degree C height were the most consistent (30 min for each case). 

In addition to the above comparisons, Hinson (1997) also looked for correlations 

between electric field variations as measured by field mill and NLDN data for the same 
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three convective cells. Unlike the radar reflectivity comparisons, the electric field 

variations did not prove to be useful in forecasting the cessation of lightning. 
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3       Methodology 

3.1 Introduction 

Forecasting the cessation of lightning has been a research topic that has received 

very little attention by the research community. The results of the lone research effort 

that primarily focused on forecasting the cessation of lightning by Hinson (1997) were 

minimized because only three thunderstorms were evaluated. With this in mind, the 

initial focus of this thesis was to identify a larger sample size of thunderstorms and 

thereby allow for a more statistically significant result. This was an ambitious goal that 

absorbed a large proportion of the allotted research time. The remainder of this chapter 

focuses on the methods, techniques, and criteria used to identify the thunderstorms in this 

thesis. 

3.2 Geographic Region of Interest 

The 45th Weather Squadron (45WS) located at Kennedy Space Center sponsored 

this research effort. With increasing sample size in mind, a large region that included all 

of the 45 WS areas of forecast responsibility was considered in this study (Fig. 6). This 

region is centered on the Melbourne (KMLB) WSR-88D site (28.1128° N, 80.6589° W) 

and extends out 90 nmi around KMLB. Each of the valid thunderstorm cited later in this 

section occurred in this region. 

18 



www.manaraa.com

Figure 6. Geographic region of interest. 

3.3      Identification of Cases 

The thunderstorm cases in this thesis were identified using a combination of 

climatology, Weather Surveillance Radar 88D (WSR-88D), and NLDN data. The 

specifics of each are described in the following sections. 

3.3.1    Applying Climatology 

Airmass thunderstorms that occur over Florida and develop in low shear 

environments have been shown to have the highest frequency of cloud-to-ground flashes 

in the United States (Orville 1991). This type of thunderstorm can be initiated either by 

localized heating or by low level convergence (Byers and Rodebush 1948). Typically, 

airmass thunderstorms initiated by low level convergence that develop over Florida 
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during the summer months are due to interactions between sea and land breezes and the 

low level wind or convective outflow from a nearby thunderstorm. These conditions, 

along with the absence of synoptic scale forcing, are most commonly observed between 

the months of May and September (Neumann 1971), and, consequently, only 

thunderstorms that occurred between May and September were considered in this 

research project. 

3.3.2   Identification Using NLDN Data 

In order to maintain consistency of the data set, only thunderstorms that occurred 

after the NLDN upgrade in 1994 were included in this research project. An additional 

restriction was that all valid thunderstorms must not have progressed beyond the mature 

stage of development (Fig. lb) in their lifecycle as they entered the 90 nmi umbrella 

surrounding KMLB. This restriction was meant to ensure that, as each thunderstorm 

moved under the 90 nmi umbrella it was in a phase where collisions between water and 

ice particles were actively generating and/or maintaining sufficient charge separation 

within the cell to produce a lightning flash. The last restriction was that each 

thunderstorm must be reasonably isolated, meaning that the lightning flashes from a 

nearby thunderstorm were not significantly contaminating the thunderstorm of interest. 

Some contamination was allowed in the early stages of the thunderstorms lifecycle as 

long as the contaminant flashes were not recorded as the maximum peak current, and did 

not significantly affect the flash rate. 

With these criteria in place, NLDN data archived at the Air Force Institute of 

Technology (AFIT) were then used to identify specific thunderstorm cases. This was 

accomplished by identifying days in which a thunderstorm occurred within the 90 nmi 
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radius of KMLB. An Interactive Data Language (IDL) program (Appendix A) was 

written to extract and write to a file the total number of flashes that were recorded 

beneath the umbrella surrounding KMLB for each day (0000 UTC - 2359 UTC) that fell 

between the months of May and September and between the years of 1995 and 1997, 

inclusively. After running this program a list of 566 valid thunderstorm days were 

produced. 

With a list of valid thunderstorm days in hand, it was then possible to generate 

Graphics Interchange Format (GIF) animations of the CG lightning over the region of 

interest for each given day (Fig. 7). The region of interest was expanded to 120 nmi to 

allow tracking of a thunderstorm as it moved into or out of the 90 nmi umbrella 

surrounding KMLB. An IDL program was written to generate a GIF image every ten 

minutes for each of the 566 valid thunderstorm days (Appendix B). The ten minute time 

interval was selected as a compromise between storm detail and hard disk space 

availability. The ten minute interval was a small enough time step to capture the general 

details of an individual thunderstorm while at the same time conserving disk space usage. 

A more detailed analysis of the lightning data using a five minute time interval was 

conducted later, and the details are discussed in section 3.4. For the purpose of storm 

identification, the ten minute interval was sufficient. The NLDN data was then run 

through this IDL program for each of the 566 valid thunderstorm days and ultimately 

generated more than 80,000 GIF images that occupied more than 10 Gigabytes in hard 

disk space. 
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Individual thunderstorms and their 
associated flashes over a ten minute 
interval. 

N^ 

Figure 7. Example of large scale GIF image used to identify 
thunderstorm cases. Boxed region is magnified in Figure 8. 

With the GIF images generated, it was then possible to begin identifying specific 

thunderstorm cases. The software program Xanimate® running on a SUN Sparc® 

Workstation was used to animate each series of thunderstorm GIF images. The most 

obvious dates to begin with were the dates in which previous research efforts had 

identified low shear thunderstorm events that occurred over Florida. Both Hinson (1997) 

and Gremillion (1999) identified these types of storms that occurred over the KSC 

complex. A total of eight of these previously identified storms met the limiting criteria 

described previously. By animating the lightning plots, an additional 38 previously 

uncited thunderstorms were identified that met the limiting criteria. This brought the 

total number of valid thunderstorm cases to 46. 
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3.3.3    Further Identification Using WSR-88D Data 

Having identified the date and time of each of the 46 thunderstorm cases, the 

corresponding days of WSR-88D Archive Level II data were then requested through the 

Air Force Combat Climatology Center (AFCCC).   Upon receipt of the Level II archive 

data stored on 8 mm tape, each of these 46 cases was then processed through WAT ADS, 

and then reevaluated using radar data. 

The limiting criterion for the WSR-88D data is similar to that of the lightning 

data. Each thunderstorm must not be beyond the mature stage of development (Fig. lb) 

as it enters the 90 nmi umbrella surrounding KMLB. This limitation ensures that when 

the radar is on its lowest elevation scan (0.5°) that the -10° C level (6000 m) of each 

thunderstorm can still be sampled by the radar. Additionally, this limitation also ensures 

that there is still an updraft present within the thunderstorm and subsequently, higher 

reflectivity particles (larger) are still suspended in the cell. The stage of development 

was determined objectively by evaluating vertical cross sections of each thunderstorm 

with the aid of WAT ADS. After applying this criterion, the previously identified data set 

it was reduced from 46 to 44 cases. The excluded 2 cases had incomplete or corrupted 

Level II archive data sets and were therefore discarded. 

3.4      Extraction of Specific Lightning Parameters 

With the 44 valid thunderstorm cases identified, a more detailed analysis of each 

case was then possible. An IDL program (Appendix C) was written to extract specific 

lightning parameters (described in Table 1) from the NLDN data archive. 
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Table 1. Description of lightning parameters. 
Variable Definition 
Tot Flashes Total number of flashes recorded throughout the life of the 

thunderstorm. 
Last Flash Time occurrence of last flash, recorded in minutes following 

0000 UTC. 
Max PK Curr Maximum absolute peak current recorded during the life of the 

thunderstorm (kA). 
t/o Max PK Curr Time occurrence of peak current, recorded in minutes 

following 0000 UTC. 
PK Flash Rt Maximum flash rate recorded over a 5 minute interval during 

the life of the thunderstorm. 
t/o PK Flash Rt Time occurrence of peak pos flash rate, recorded in minutes 

following 0000 UTC. 
PK Pos Flash Rt Maximum pos flash rate recorded over a 5 minute interval 

during the life of the thunderstorm. 
t/o PK Pos Flash Rt Time occurrence of peak pos flash rate, recorded in minutes 

following 0000 UTC. 
PKNeg Flash Rt Maximum neg flash rate recorded over a 5 minute interval 

during the life of the thunderstorm. 
t/o PK Neg Flash Rt Time occurrence of peak neg flash rate, recorded in minutes 

following 0000 UTC. 

This IDL program also produced two graphical outputs. The first type is a GIF 

image that depicts the location of each flash on a high resolution map (Fig. 8). These 

images are very similar to the ones initially used to identify potential thunderstorm cases 

except they were generated every 5 minutes and were focused in on one particular 

thunderstorm. An animation of a thunderstorm as depicted by lightning flashes can be 

built when the GIF images are looped in sequence. The second graphical output is a time 

series plot of the four lightning parameters used in this research effort (Fig. 9), those 

values being maximum absolute peak current (solid) measured along the left y-axis, peak 

flash rate (dash), peak negative flash rate (dot), and peak positive flash rate (dash dot). 

The latter three are measured along the right y-axis. 
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Specific thunderstorm 
of interest 

Figure 8. Example of small scale GIF image used to isolate 
each thunderstorm case. 

3.5       Extraction of Specific WSR-88D Parameters 

Extraction of specific WSR-88D parameters was a very important part of this 

research project, since a large majority of prior research efforts cited in Chapter 2 of this 

thesis had previously identified relationships between various radar and lightning 

parameters. The WSR-88D derived parameters of particular interest to this research 

project are listed in Table 2. Automating the extraction of these specific WSR-88D 

parameters was not possible, and they were instead extracted manually, volume scan by 

volume scan, using WATADS. 
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Figure 9. Example of a time series plot. 

3.5.1    Data Extraction Problems 

Using WAT ADS, the extraction of the base reflectivity values at unique 

temperature levels, proved very time consuming and more importantly, the results were 

inconsistent. WATADS allows a user to manually extract a reflectivity value and its 

respective height by merely placing the mouse over the bin of interest and clicking the 

left mouse button. When this sequence of events is accomplished, WATADS displays 

the reflectivity value and its height in the lower right hand portion of the RADS display 

window. This process was time consuming but initially appeared to accurately produce 

the desired values. However, after reevaluating a test case three separate times, it was 
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Table 2. Description of radar parameters. 
Variable Definition 
Max VIL 

t/o Max VIL 

Max Ref 

t/o Max Ref 

Vertically integrated liquid water. Liquid water content (kg m") that 
is contained within a 2.2 x 2.2 nmi column of air above a particular 
geographic point. 
Time occurrence of maximum VIL, recorded in minutes following 
0000 UTC. 
Maximum Reflectivity. Represents the echo intensity of a particular 
target based on how much electromagnetic radiation is returned from 
that target back to the antenna and has units of dBZ. 
Time occurrence of maximum Reflectivity, recorded in minutes 
following 0000 UTC.  

discovered that this method produced three separate results. This was because, in 

WATADS, as you move the mouse within a specific bin and click the mouse button, you 

can get different reflectivity and height values literally based on the pixel you have 

selected. This fact made it very difficult to duplicate the same procedure consistently for 

one case and even more difficult to duplicate over 44 cases. As such, this method of 

analysis was abandoned since any results that were produced would be extremely 

subjective. 

3.6      Complete Data Set 

The culmination of applying the limiting criterion to the extraction of specific 

lightning and WSR-88D parameters for each thunderstorm case is displayed in Table 3. 

All variables listed in Table 3 have been described in the previous sections with the 

exception of case number, (which is self explanatory) and values followed by "dt", which 

represent the time difference (in minutes) between the peak occurrence ofthat variable 

and the last flash of the thunderstorm. Additionally, this table represents all of the data 

that will be used in the analysis section of this thesis. 
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Table 3. Complete data set Represents all the data used in analysis section (M denotes 
missing data) . Cases 4 and 13 have been removed for reasons previously discussed. 

.:, case- 1 2 3 5 6 7 8 9 10 11 12.1- 14 15 16 17 18 

Tot Flashes 145 117 9 33 15 10 89 130 118 308 544 181 228 1024 108 220 

MaxVIL 43 40 20 39 34 31 40 48 40 49 37 49 47 88 38 46 

VlLdt 20 39 10 33 15 14 82 41 52 101 52 108 56 73 51 48 

MaxRef 60 59 57 66 57 58.5 59 66 64.5 61 62 65.5 67 68.5 63.5 63 

L/C-MaxRef 5800 5300 1300 6300 2100 1700 2600 5400 4200 2300 4300 1300 4800 4100 1300 6200 
Refdt 26 33 10 57 0 14 35 51 47 38 48 103 46 66 91 55 

PeakCurr 98 98 26 81 74 58 130 82 58 157 101 83 102 107 111 64 

PKCurrdt 12 28 0 6 5 3 9 31 55 104 73 56 10 34 51 27 

PK Flash Rt 25 34 5 8 4 5 14 27 23 25 51 24 34 145 14 24 

PKRashdt 34 34 20 24 12 10 53 40 53 129 83 92 64 62 45 46 

PK Pos Hash Rt 1 2 1 1 1 0 1 4 4 7 11 5 2 40 3 3 

PK Pos Rash dt 18 30 20 7 22 M 53 40 58 83 93 77 29 57 49 36 

PKNeg Flash Rt 25 33 4 8 4 5 13 23 21 24 43 21 34 112 13 22 

PKNeg Flash dt 34 34 20 24 12 10 53 40 53 129 83 92 64 62 40 52 

Case 19 20 j:21 '■■ 22 ;23'" 
... ^ . 

25 26 27 28 29 30 31 32 33 ~34>: 
Tot Flashes 56 96 11 136 46 123 16 26 20 29 3 14 207 12 35 800 
MaxVIL 42 38 19 29 35 36 41 34 31 32 24 39 57 39 31 43 

VILdt 24 40 15 24 58 31 17 14 8 18 34 4 39 13 26 129 

MaxRef 64 61 55 67.5 58 57.5 63.5 54 58.5 57 57.5 63.5 63.5 63.5 62.5 67 

UO MaxRef 5700 2200 1500 2900 2500 3800 4200 3700 2400 1600 1000 2700 8200 6100 4400 5100 
Refdt 30 80 15 24 40 25 17 28 3 13 22 4 45 18 41 134 

PeakCurr 81 68 26 121 113 56 41 75 46 128 45 48 55 45 100 115 
PKCurrdt 11 52 7 7 23 42 9 35 4 13 4 1 57 12 0 75 
PK Flash Rt 22 15 2 17 10 24 8 8 9 7 1 7 22 5 9 68 
PK Flash dt 16 36 26 23 35 42 12 20 11 16 20 3 31 10 30 89 
PK Pos Rash Rt 0 2 1 2 1 1 0 1 1 1 0 1 2 1 1 21 
PK Pos Rash dt M 36 16 63 10 42 M 20 11 16 M 8 41 16 24 64 
PKNeg Flash Rt 22 13 2 17 10 24 8 7 8 6 1 7 22 5 9 62 
PKNeg Flash dt 16 36 26 23 35 46 12 20 11 16 20 3 31 10 30 84 

|s % Case 35 36 37 38 39 40 41 42.1 43 44 45 46 
Tot Flashes 93 55 52 7 86 20 11 148 26 28 573 24 
MaxVIL 37 29 36 25 42 33 25 48 25 32 42 22 
VILdt 68 64 52 23 38 17 8 43 29 26 52 2 

MaxRef 64 55.5 55 56 58 56.5 55.5 60.5 60.5 55 63 55.5 
L/O MaxRef 4800 1200 4500 1800 4700 5100 5100 8200 6400 3600 5100 2100 
Refdt 68 69 26 17 18 17 13 28 29 26 47 2 
PeakCurr 123 178 215 28 79 46 24 79 30 49 88 36 
PKCurrdt 17 26 13 17 31 13 6 19 11 14 33 20 

PKRashRt 14 10 10 3 21 9 5 22 6 12 68 10 

PKRashdt 70 55 44 8 34 15 5 20 15 23 39 9 

PK Pos Rash Rt 2 2 2 0 9 1 2 8 1 0 8 0 
PK Pos Flash dt 24 19 24 M 25 4 5 35 15 M 54 M 
PKNeg Flash Rt 13 9 9 3 12 9 4 19 5 12 67 10 

PKNeg Flash dt 70 55 44 8 34 15 7 

28 

20 10 23 39 9 
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4.        Analysis and Results 

4.1 Introduction 

With the complete data set generated, it was possible to begin evaluating 

techniques for forecasting the cessation of lightning based on the lightning and radar 

parameters listed in Table 3. It should be noted that the data set of 44 thunderstorm cases 

represent a substantial increase in sample size from Hinson's research effort conducted in 

1997, and though results may not be conclusive, they will be more statistically 

significant. 

This chapter focuses on detailed analysis of these parameters along with the 

results. Specifically, the analysis involves performing statistical evaluations on the data 

to identify if any significant correlations exist between the parameters. Where 

correlations are significant, regressions are generated and evaluated for their usefulness in 

forecasting the cessation of lightning. 

4.2 Analysis Tools 

4.2.1    x-y Plots 

An x-y plot or scatter plot is an efficient way of displaying paired data sets and 

allows for quick identification of many common patterns (linear, nonlinear) that may 

exist. For this reason, these plots are used extensively throughout this chapter. They are 

generated by plotting one value versus the other on a Cartesian grid in a 2-dimensional 

plane (see figures 1 la - 1 If). Ideally, if a pattern does exist, then a mathematical model 

may be derived to describe the relationship and ultimately be used as a model to forecast 

the cessation of lightning. 
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4.2.2    Least Squares Line 

If the plotted points of a particular comparison tend to cluster about a straight line, 

i.e., linear, then the x-y plot will also be accompanied by a least squares line associated 

with the x and y values. Equation 1 is the mathematical representation of a least squares 

line, where y is the dependent variable, x is the independent variable, ßo is the y intercept 

(2), and ßi is the slope of the line (3). It should be noted that the simple linear regression 

models discussed in this research effort will also be expressed in this form (1). 

yest=ßo + ßrx (1) 

n n 

E yi-Pi-S x> 
ßn=- 

i=i i= l 

n (2) 

n- E xi,yi - E xi ■ E yi 

ßi=- 
i=i i=i   i=i 

- E W2 - E 
n 

i=l \i-i 

(3) 

This linear equation (1) will serve as a single variable linear regression model for 

the plotted x-y values. The accuracy of each comparison for the regression line with 

respect to the actual data points will be evaluated using other statistical calculations such 

as standard deviation (s), coefficient of determination (R2), and standardized residuals 

(es), all of which are described later in this section. 
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4.2.3    Standardized Residuals 

Residuals represent the difference between the predicted value of the dependent 

variable (yest) and the observed value (y) for the same point (4), and essentially 

e=y-yest w 

indicates the degree of error in the vertical direction at each given data point that is 

associated with the linear regression model (Wilks 1995). 

Standardized residuals (5) can be calculated by dividing the residual (4) by the 

standard error of estimate (6) and are especially useful in determining whether the 

regression model is valid (Devore 1995). If a plot of standardized residual versus the 

independent variable does not display any distinct pattern (i.e., it's randomly distributed), 

and the majority of the plots lie between 2 and -2, then the regression model in question 

may accurately represent the data. 

e = s se_e(e) (5) 

se_e(e)= 
(6) 

It is important to emphasize that standardized residual plots by themselves do not 

definitively show that a regression model is accurate. They're just one statistical tool that 

may be used in conjunction with others to help make this determination (Devore 1995). 

Specifically, the statistical tools that accompany the standardized residuals in this chapter 
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are the coefficient of determination (R ), and plots of yest (fitted values) versus y 

(observed values). 

4.2.4   Coefficient of Determination 

Assuming a normal distribution and an approximate linear relationship exists 

between the independent and dependant variable, then the coeffecient of determination 

(R ) may be used to help identify how a particular regression model may perform. 

Devore (1995) defines R as the proportion of observed dependant variable (y) variation 

that can be explained by the simple linear regression model. 

R can take on values that range from 0 to 1. Higher values of R indicate that the 

regression model explains the variation in y very well. Conversely, lower values indicate 

that the regression model does not effectively explain the variation in y, and an 

alternative model should be used. 

(7) R2=l 
SSE 

SST 

n 

SSE= 

i=l 
■yest)2 

SST= 

n 

i= 1 

" y mean) 

(8) 

(9) 

-y 

The calculation of R (7) involves subtracting the product of the sum of squared 

errors (SSE) and the inverse of the total sum of squares (SST"1) from 1. SSE and SST are 

defined by Devore (1995) as the sum of squared deviations about the least squares line 

(8) and the sum of squared deviations about their mean (9) respectively. 
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4.2.5    Standard Deviation 

An estimate of the variance (a2) is obtained by dividing SSE by the degrees of 

freedom (n-2) of the estimate (10) and represents the average of all squared deviations 

from the mean (Devore 1995). The estimated standard deviation (s) is merely the positive 

square root of a (11) and is a convenient measure of dispersion. Each of these 

2   SSE 

n-2 v   ' 

S=JG2 (11) 

estimated values will be used as a measure of the validity of the regression models. 

Larger values will be an indication that the regression model may not be a useful forecast 

tool. 

4.2.6   Evaluation of Forecast Skill 

Forecast skill is a useful measure of how effectively a given regression model 

performs and refers to the relative accuracy of a regression model compared to the 

accuracy of climatology (Wilks 1995). In this research effort, each regression model is 

compared directly to the climatological life span of a single-cell thunderstorm. This 

introduces some error since the regression each model is built using time occurrence of 

specific lightning and radar parameters as indicators of the impending cessation of 

lightning. The time occurrences of these parameters may or may not coincide with the 

time occurrence of the onset of electrification of the cell. Hence, the skill values 

presented in the analysis section should not be taken literally, but instead as a general 

indicator of the performance of the model. 
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The accuracy of the regression models and climatological averages canbe 

described in terms of the mean absolute error (MAE) or the mean squared error (MSE), 

each of which are described below. In Equation 12, skill score (SS) is calculated in terms 

SS MAE 
MAE 

MAE climo 
(12) 

of MAE (SSMAE) and can be easily adjusted to be calculated in terms of MSE by merely 

exchanging MAE for MSE. 

The two most common measures of forecast accuracy are MAE and MSE (Wilks 

1995). Mathematically speaking, MAE is the average of the sum of absolute values of the 

difference between the forecast (yest) generated by the regression model and the observed 

value (y) (13). MAE increases as the differences between forecasts and observations 

increase and can be interpreted as a typical magnitude for the forecast error (Wilks 1995). 

MAEcijmo is analogous to MAE except yest is replaced with climatological average (climo) 

(14). 

n 

MAE= 
n  ^ yest-y, (13) 

1= 1 

MAE climo" =i- Y^ | clim°- y, 
n  *—'   ' 

(14) 

i= 1 

The MSE is the average of the sum of the squared differences between the 

forecast (yest) generated by the regression model and the observed value (y) (15). The 
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squaring of the differences makes the MSE more sensitive to large errors than the MAE, 

but in order to express the typical magnitude of forecast error the square root of MSE 

(RMSE) must be calculated (16). The MSECHmo is analogous to MSE except yest is 

replaced with climatological average (climo) (17). 

n 

MSE4'Z (y-T*)2 <15> n 
i=l 

ii=/f RMSE^MSE (16) 

MSE climo5 =rS   (clim°-yn)2 (17) n 
i=l 

4.3   Simple Linear Regression Analysis 

After viewing the initial x-y plots, it was discovered there were four cases that 

had anomalous numbers of flashes. Creating a box and whiskers plot (Fig. 10) of the 

flashes identified the anomalous cases as outliers (Devore 1995) and these cases were 

subsequently eliminated from the study. The removal of these cases reduced the data set 

to 40 thunderstorms. 

The remainder of this chapter focuses on evaluating the peak occurrence of a 

particular lightning or radar parameter and determining its usefulness, if any, in 

forecasting the cessation of lightning. Specifically, the radar parameters are peak VIL 

and reflectivity, and the lightning parameters are peak cumulative, positive, and negative 

flash rates and absolute maximum peak current. 
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Figure 10. Box and whiskers plot. Depicts the total number of flashes for each 
thunderstorm case. * denotes outliers, and O denotes extreme outliers. 

4.3.1    Analysis of Cases 

An initial analysis of each case was conducted using x-y plots to look for any 

graphical evidence of a simple linear relationship that may exist between the respective 

paired data sets (Fig. 1 la -1 If). Each of these figures was constructed by plotting the 

peak value in question (VIL, reflectivity, maximum peak current, etc) recorded for each 

thunderstorm (x axis) versus the time difference between the occurrence ofthat 

particular peak value and the last flash of the thunderstorm (y axis). Overlaid on each of 

these plots is a least squares line (discussed earlier), which represents for each case the 

simplest linear regression model that can be constructed from the respective data sets. 

Note, ßo (y intercept) and ßi (slope) of the regression models are given in Table 4. 
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Table 4. Simple linear regression variables. Specific slope (ßi), y intercept (ßo), standard 
deviation (s) and coefficient of determination (R2) for each case. 

Case ßo ßi R2 s 

Peak VIL vs. Peak VIL dt -7.68 1.17 0.26 20 

Peak Reflectivity vs. Peak Reflectivity dt -20.7 0.91 0.14 22 

Peak Current vs. Peak Current dt 15 0.07 0.03 19 

Peak Flash Rate vs. Peak Flash Rate dt 10.94 1.37 0.46 16 

Peak Pos Flash Rate vs. Peak Pos Flash Rate dt 16.28 3.92 0.21 18 

Peak Neg Flash Rate vs. Peak Neg Flash Rate dt 11.05 1.48 0.44 17 

Recall that one method of measuring the validity of a regression model is to plot 

the standardized residuals. Figures 12a through 12f are the standardized residual plots for 

each comparison, and in each case, they are randomly distributed, and only a few values 

exceed 2. Thus, each of the regressions is considered statistically valid, but as mentioned 

earlier, that does not necessarily indicate that it's accurate. 

By visually inspecting each of the x-y plots and noting the modest values for the 

coefficients of determination (R2) and the high standard deviations (s) in Table 4, it can 

be concluded that the regression models do not completely represent the data accurately 

however, some represent the data better than others. Specifically, the comparisons 

involving the peak cumulative and peak negative flash rates produced least squares lines 

indicated in each case an increase in flash rate corresponded to an increase in the time 

interval between the occurrence ofthat peak and the last flash. Additionally, the R2 

values for these two cases were greater than 0.4, but their standard deviations were 
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Figure lie. x-y Plot of Peak Positive 
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Figure 12a. Standardized Residual Plot for VIL Case. 
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Figure 12d. Standardized Residual Plot for Peak Negative Flash 
Rate Case. 

2 — ? T 
<p 

() © 
<) 
() 

{0      °      ° 
 ,) 1 L 1 1  

() 
O 

O 

2 

4 6 

Peak Positive Flash Rate 

10 
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Figure 12f. Standardized Residual Plot for Max Peak Current Case. 
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still on the order of 15 minutes. To a lesser degree, the comparison involving peak VIL 

also produced a least squares line that described the general trend of the data, but this 

case only produced a modest R2 value of 0.26 and a relatively high standard deviation of 

20 minutes. The remaining comparisons produced x-y plots, R2 and standard deviations 

that were not consistent with linear behavior. 

Additional x-y plots were generated using the exact same data as previously 

noted. However, these new sets of plots (Fig. 13a -13f) were slightly different from the 

initial set (Fig. 12a —12f) because they distinguished between single and multi-cell 

thunderstorms (plus and circle symbols respectively) and were plotted on logarithmic 

scales. Each plot (excluding the positive flash rate comparison) consists of 18 single-cell 

cases and 22 multi-cell cases. Additionally, they graphically illustrate the distinction that 

can be drawn between multi-cell and single-cell thunderstorms. Clearly, these figures 

suggest that evaluating each thunderstorm cell type independently may, but not 

necessarily, produce a more accurate regression model. Such an evaluation was 

accomplished for each comparison, and some of the results are displayed in Table 5. 

When the values in Table 5 are compared to the original values in Table 4 it is 

evident that there are substantial differences between the evaluation methods. Of 

particular interest are the comparisons displaying the highest degree of linearity. Those 

comparisons were peak cumulative flash rate, peak negative flash rate, and peak VIL. 

For each of these cases, the standard deviations of the regressions generated using 

42 



www.manaraa.com

Table 5. Simple linear regression variables distinguished by thunderstorm type. Specific 
slope (ßi), y intercept (ßo), standard deviation (s) and coefficient of determination (R2) 
for each case and cell type. 

Comparison Cell Type    ß0      ßi      R2      s 

Peak VIL vs. Peak VIL dt Single           6       0.35     0.11      10 
Multi           11      0.89    0.18     21 

Peak Reflectivity vs. Peak Reflectivity dt 
Single         1.1      0.25    0.12     10 
Multi           -4      0.85     0.21     22 

Peak Current vs. Peak Current dt 
Single          3       0.14    0.19      8 
Multi          47     -0.19    0.03     21 

Peak Flash Rate vs. Peak Flash Rate dt 
Single           9       0.68     0.34      7 
Multi          21       1.08     0.28     18 

Peak Pos Flash Rate vs. Peak Pos Flash Rate dt 
Single          15      0.35       0        8 
Multi          26      2.53     0.13     22 

Peak Neg Flash Rate vs. Peak Neg Flash Rate dt 
Single         9.2      0.69    0.34      7 
Multi          27      0.99     0.27     18 

the single-cell data set were smaller than those that were generated using the original data 

set which made no distinction between cells. Conversely, the standard deviations for the 

regressions built using the multi-cell data set were all greater that the original set of 

regressions. This result is not surprising since a single-cell thunderstorm typically has a 

life span (in terms of minutes) with a lower bound near 30 and an upper bound near 50. 

This is not necessarily the case for multi-cell thunderstorms. They may be nearly as short 

lived as a single-cell thunderstorm or may persist for hours. Therefore, the lifespan of a 

multi-cell thunderstorm can take on a larger range of values than that of a single-cell 

thunderstorm and subsequently is more likely to produce a larger standard deviation. 

Another interesting difference between the two tables is that for the cases of 

interest each of the ßo (y intercept) values in Table 5 intersect the positive y axis (positive 
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time). This is important since these regression models will be used as forecast tools and a 

physically realistic result of positive time is desired. 

The last notable difference between the tables is that in each case, the R2 values 

for both the multi and single-cell cases in Table 5 are smaller than the original values in 

Table 4. This indicates a decrease in the linear correlation between the two variables in 

each case and subsequently lowers the confidence in the regression models. 

A true measure of the accuracy of the regression model is to plot the predicted 

values versus the observed values. The more accurate the model is the more closely the 

plot will mirror a line with a slope of one (i.e., a 45° line). Figures 14a through 14f are 

plots of this type broken up by cell. A brief inspection of these figures reveals for each 

case that neither the single nor the multi-cell regressions bear any resemblance to a 45° 

line. In fact, in all cases, the slopes of the plots approach zero indicating an inaccurate 

regression model. Additionally, in each case, the regression models are an over estimate 

of the smaller observations and an under estimate of the larger. This behavior is 

consistent through each case and doesn't appear to be any less a factor in the previously 

cited cases where the degree of correlation was noted as among the highest (i.e., peak 

flash rate, peak negative flash rate, and VIL). 
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Figure 14a. Comparison of Forecast vs. 
Observation for VIL Case. 
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Figure 14b. Comparison of Forecast vs. 
Observation for Reflectivity Case. 
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Figure 14c. Comparison of Forecast vs. 
Observation for Peak Flash Rate Case. 
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Figure 14d. Comparison of Forecast vs. 
Observation for Peak Neg Flash Rate 
Case. 
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Figure 14e. Comparison of Forecast vs. 
Observation for Peak Pos Flash Rate 
Case. 
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Figure 14f. Comparison of Forecast vs. 
Observation for Max Peak Current 
Case. 
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4.3.2    Skill Evaluation of Simple Linear Regressions 

The previous section focused on determining the validity of each regression 

model along with an initial estimate of the accuracy based on R , standard deviations, and 

finally x-y plots of regressed values versus observed values. This section has a slightly 

different focus. It will explicitly concentrate on the ability of a particular regression 

model to forecast the cessation of lightning by calculating the regression's skill and 

comparing it to that of the climatological skill. 

The initial findings discussed in the previous section suggest that the regression 

models would, at best, produce marginal results. However, after calculating each 

regression's skill as measured by comparing it to that of the climatological accuracy, it 

was evident that the regressions proved in each case to be a better forecasting tool than 

climatology. It should be noted that for reasons previously discussed, only single-cell 

thunderstorms have clear climatological life spans. For this reason, only the regression 

models built using the single-cell thunderstorm data set (18 cases) along with the 

complete data set (40 cases) are used in the skill evaluation. The regressions based solely 

on the multi-cell thunderstorms data set (22 cases) were excluded since no representative 

climatological average exists. Figures 15a through 15f are plots of each case and 

graphically illustrate the increase in forecast skill of each regression. The y-axis of these 

plots represents the percent increase or decrease in forecast accuracy of the regression 

model versus climatology and the x-axis is merely the theoretical climatology in 
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Figure 15d. Skill of Peak Neg Flash Rate Based Regression vs. Climatology. 
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Figure 15f. Skill of Max Peak Current Based Regression vs. Climatology. 
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units of minutes with the actual climatological average of a single-cell thunderstorm 

identified as the area that falls between the two dashed vertical lines. The remainder of 

this section will focus strictly on this small area between the vertical lines. Table 6 

summarizes some of the more important results. 

Table 6. Summary of skill values for each simple linear regression. 
Skill @ 30 min (%) Skill @ 50 min (%) 

RMSE Comparison Single No distinction Single No distinction MAE 

MAE       MSE MAE    |    MSE MAE MSE MAE    |    MSE 

VIL 46         64 36          49 77 92 14          25 9.5 7.3 

Reflectivity 51         70 32          41 79 93 5           14 9.1 6.9 

Current 64         83 21          21 82 95 54          72 8.2 6.5 

Flash Rate 67         86 52          44 86 97 28          69 6.2 4.8 

Pos Flash Rate 67         87 16          11 84 96 48          60 6.9 5.6 

Neg Flash Rate 68         86 26          42 86 97 51          68 6.1 4.8 

The skill values presented in Table 6 represent the percent increase in forecast 

skill over climatology calculated at eight discrete points on each of the figures above. 

Skill values are calculated four times at the climatological minimum life span of a single- 

cell thunderstorm (i.e., where the 30 minute vertically dashed line intersects the mean 

absolute error (MAE) and mean squared error (MSE) curves of each regression). Skill 

values are calculated four more times at the climatological maximum of a single-cell 

thunderstorm (i.e., where the 50 minute vertically dashed line intersects the MAE and 

MSE curves of each regression). 

By carefully evaluating Figures 15a through 15f, one can identify three common 

features. First, all of the regression models produce an increase in forecast skill over 

climatology. Second, for each case the regressions built using the single-cell 

thunderstorm data set not only out performed climatology, but they also consistently out 
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performed the regressions built using the complete data set. Lastly, the method of 

calculating forecast skill using MSE consistently out performed the MAE method. 

An evaluation of the data presented in Table 6 also produced some expected and 

unexpected results. For instance, the peak flash rate and peak negative flash rate cases 

produced the lowest MAE and RMSE, and that's not surprising since they displayed the 

highest linear correlation. But, what is surprising is that these two cases did not always 

produce the greatest increase in forecast skill although they did produce among the 

greatest. Another unexpected result was that the peak positive flash rate and maximum 

peak current cases consistently produced among the highest increases in forecast skill. In 

fact, these cases out performed the VIL case in almost every comparison. 

4.4  Multiple Linear Regressions 

A description of multiple linear regressions is very similar to that of the simple 

linear regression previously discussed. Essentially, the difference is that multiple 

regressions relate two or more independent variables to a single dependant variable. 

They typically are written in the form of Equation 18 where xi and X2 are the independent 

variables and yest is the dependent variable. It should be noted that it's possible to 

evaluate more than two independent variables, but with time being the limiting factor in 

this research effort, only regressions involving two independent variables were 

considered. 

yest = ßo+ßfxi+ß2-x2 (18) 

Regression A =10.04+1.915-X!-1.346-x2 (19) 

Regression B = 12.22+2.478-xr1.279'x2 (20) 

Regression C = 9.9+1.866xi-.009-x2 (21) 
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The analysis portion of this section involved evaluating twelve different 

combinations of the lightning and radar parameters. These different combinations were 

then used to generate twelve independent models from each of the single-cell, multi-cell 

and no distinction data sets. In all, 36 regression models were created. R2 values for 

each of the 36 regressions were then calculated. The model from each of the three data 

sets (single-cell, multi-cell, and no distinction) with the highest R2 value was singled out 

to be evaluated for its usefulness in forecasting the cessation of lightning. Specifically, 

regressions A, B, and C (19, 20 and 21 respectively) were generated using single-cell, no 

distinction, and multi-cell data sets respectively. A summary of the results is listed in 

Table 7 and a plot of the skill of each regression versus climatology is shown in Figure 

16. It should be noted that the skill values presented in Table 7 and Figure 16 were 

calculated using the MSE method since it produced the greatest increase in forecast skill 

over climatology. This analysis technique is slightly different than in the previous 

comparison where both MSE and MAE were used to calculate the skill values. Referring 

back to the Table 6, recall that the skill values calculated using MSE were consistently 

higher than those calculated using the MEA method. The same is true for these 

regressions so, to reduce clutter on the plots, the skill evaluation using MAE was 

excluded. 

By comparing the data in Table 7 for regressions A and B to the data in Table 6 

generated using a simple linear regressions it's possible to evaluate which technique of 

linear regression (simple or multiple) produces the highest increase in forecast skill. 
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Table 7. Summary of skill values for each multiple linear regression. Dependant (yest) 
and independent (xi, X2) variables used to generate each multiple regression and their 
associated skill scores at the location that each intersects the vertically dashed lines in 
Figure 16. 

Comparison Skill @ 30 
min (%) 

Skill @ 50 
min(%) 

RMSE Xl *2 yest 

Regression A 86 97 7.55 Peak Flash Peak Neg Peak Flash 
(single-cell) Rate Flash Rate Rate dt 
Regression B 45 70 15.35 Peak Flash Peak Neg Peak Flash 
(multi-cell) Rate Flash Rate Rate dt 
Regression C 71 49 14.11 Peak VIL Height of Peak VIL dt 
(no distinction) Max Ref 

When this was accomplished, it was evident that regressions A and B offer no substantial 

improvement over the best performing simple linear regression models. In fact, 

compared to the peak flash rate case (Table 6), the skill values are almost identical and 

the RMSE is actually slightly higher for regressions A and B. 

While a comparison of the data in Table 7 to that of Table 6 does not indicate that 

multiple linear regression models are any more accurate that simple linear regression 

models, the plotted data (Fig. 16) does illustrate than there are substantial differences 

between cell types. Each of the skill curves presented in Fig. 16 has a similar shape, but 

all have different minimums (with respect to time). These minimums are unique to the 

data set used to generate them and clearly reinforce an earlier conclusion that each 

thunderstorm type (single or multi-cell) must be treated individually. This is an 

important result since it explicitly shows that knowing the type of thunderstorm can 

substantially improve the forecast skill. For example, if a forecaster was trying to predict 

the cessation of lightning within a particular thunderstorm and he/she knew it was of the 

single-cell variety, then a prudent forecaster would maximize his/her forecast skill by 

applying a single-cell regression model (regression A). An improvement in forecast skill 
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could also be gained if regressions B or C were used, but clearly, they don't offer the 

same improvement as regression A that was built using the single-cell data set. 

Skill Analysis of Multiple Regressions 
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5       Summary and Conclusions 

Thunderstorms and more specifically the CG lightning flashes that they produce, 

place Air Force (AF) personnel and assets at risk every time they occur near or over an 

AF installation. To counter this risk, personnel and assets are justifiably removed from 

the area or delayed in entering the area. In either case, the effect is a decrease in 

operational efficiency, which ultimately results in a loss of tax dollars. The ability to 

predict the lightning producing life span of an individual thunderstorm would allow for a 

more timely execution of AF operations and in the process save large sums of US tax 

dollars. 

Forecasting the life span of the lightning producing portion of a thunderstorm is a 

very challenging topic. The focus of this particular research effort was directed toward 

identifying methods of forecasting the cessation of lightning by observing specific 

lightning and radar parameters. Additionally, a special emphasis was placed on 

generating a large enough sample size of thunderstorm cases to make the results as 

statistically significant as possible. Subsequently, a large portion of this research effort 

was devoted to generating the thunderstorm data set of 46 cases that was later reduced to 

40. 

The analyses of the data set involved using x-y plots to identify any correlations 

and linear or nonlinear patterns that exist. Three cases evaluated using simple linear 

regression techniques exhibited some linear behavior. Specifically the cases involving 

peak flash rate (Fig. lie), peak negative flash rate (Fig. lid), and peak VIL (Fig. 11a) 
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each produced least squares lines that were reasonably consistent with the plotted data 

and had R2 values that were among the highest calculated (Table 4). 

A further evaluation of the usefulness of simple linear regression models was 

conducted by differentiating between single and multi-cell thunderstorms in the data set. 

An additional set of regression models built using the newly separated single-cell data set 

was generated (Table 6) and compared to the initial regression models which were built 

without distinction between cells. Results were mixed. The R2 values of the single-cell 

regressions actually decreased in comparison to the initial regressions in every instance. 

This may in part be due to the small sample size of 18 thunderstorm cases, but an exact 

cause was not determined. Conversely, forecast skill as compared to climatology for the 

regressions generated using the single-cell data set increased substantially compared to 

that of the regressions generated using no distinction between cells (Fig. 15a - 15f). This 

result illustrated that the different thunderstorm cell types exhibited substantially different 

behavior with respect to forecasting the cessation of lightning. 

Multiple linear regressions were also generated using various combinations of the 

lightning and radar parameters. Skill values of the models generated using the 

combinations that produced the highest R2 values for each data set (Table 7) were 

compared to the best performing simple linear regression models. Results indicated that 

while multiple linear regression models equaled the skill performance of the simple linear 

regression models, they didn't offer any substantial improvement over them. 

Additionally, a plot of forecast skill of the multiple regression models (Fig. 16) further 

reinforced the notion that each specific thunderstorm type is unique from the other with 

respect to its relationship to forecasting the cessation of lightning. Thus, if one is trying to 
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forecast the cessation of lightning, and the specific type of thunderstorm cell is known, 

then one could substantially increase his or her forecast skill by utilizing a cell specific 

regression model. 

In summary, providing an accurate method to forecast the cessation of lightning is 

a very difficult task and will most likely take several more attempts before the problem is 

solved. This research effort has evaluated some previously untried methods for 

forecasting the cessation of lightning, and while the results have in no way indicated that 

the problem has been solved, they did, however, produce substantial increases in forecast 

skill over that of the skill of climatology. Beyond showing that regression models built 

using observable parameters (lightning and radar) consistently outperform climatology, 

this research effort also contributes a reasonably large sample size ofthat can be used in 

following research efforts. 

5.1       Recommendations for Further Research 

Applying the techniques identified by Hinson (1997) to the thunderstorm data set 

generated in this research project may prove to be the best approach since it would 

increase the sample size of his method and thereby yield a more statistically significant 

comparison to the results described in this research effort. This would be time 

consuming and require an efficient method of evaluating certain radar reflectivity values 

at discrete heights. 

Another method would be to evaluate the usefulness of LDAR data. This 

lightning detection system is unique to the KSC area and provides a three-dimensional 

view of lightning data. Evaluating LDAR data rates at specific heights (corresponding to 

peak reflectivity and VIL values) may provide some insight into solving this problem. 
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There are some variations of this research effort that could also prove to be 

worthwhile, for example, determining if weighting the regression models improves the 

forecast. Another variation would be to generate multiple linear regression models that 

have more than two independent variables. 
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APPENDIX A 

IDL PROGRAM TO CALCULATE THE NUMBER OF FLASHES 
PER DAY 

pro flash_eval 

; This program uses NLDN data to calculate the number of flashes that occur 
; over a given geographic region for each day of each year specified. 
; Lastly, it writes the number of flashes and date to a file. 

; Written By: Micheal Holmes 
; Last updated: 10 June 1999 

years = ['95', '96*, '97', '98'] 
months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'] 
nyears = n_elements(years) 
nmonths = n_elements(months) 
inpath = 7home/fujital2/flash/lghl9' 
files = strarr(nyears*nmonths) 
for y = 0, nyears -1 do $ 

for m = 0, nmonths -1 do      $ 
files[y*nmonths + m]=inpath + years[y] $ 
+ '/' + months [m] + years [y] + Ugh' 

Range = ['01/01/95', '12/31/98'] 
dl =julday(l,1,1995) 
d2=julday(12,31,1998) 
ndays = d2-dl+l 
counts = lonarr(ndays) 
num = strcompess(sindgen(100),/remove_all) 
num[0:9] = '0'+num[0:9] 

for day = 0, ndays-1 do begin 
caldat, dl+day, m, d, y 
caldat, dl+day+1, m_2, d_2,y_2 
dates=[num[m]+7'+num[d]+'/'+num[y mod 100] +' '+'00:00:00', 

num[m_2]+7'+num[d_2]+7'+num[y_2 mod 100] +' '+'00:00:00'] 
findtime, dates, startind, startpos, lastind, lastpos, files, 11L 
currentind = startind 
currentpos = startpos 
done = ((currentind GE lastind) AND (currentpos GE lastpos)) 
region = [26.12, 30.11, -82.92, -78.4] 
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nflashes=0 
while not(done) do begin 
f=getchunk(files,startind,stoppos,lastind,lastpos,region,currentind,currentpos, 11L, 
50000) 

if (nelements(f) GT 1) then begin 
nflashes = nflashes + n_elements(f)/l 1 
f = exp_lgh(f) 
endif 

done = ((currentind GE lastind) AND (currentpos GE lastpos)) 
endwhile 
start_date=[num[m]+V'+num[d]+V'+num[y mod 100] +' '+'00:00:00'] 
print, nflashes, startdate 
openu, outfile, 'filename.txt', /getlun, /append 
printf, outfile, nflashes, start_date 
close, outfile 
free_lun, outfile 

endfor 
end 
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APPENDIX B 

IDL PROGRAM THAT GENERATES GIF IMAGES OF 
LIGHTNING FLAHSES 

pro master_gif_pass 
; This program will plot the flashes in ten minute intervals 
; over a specified geographic region then write the image as 
; a gif file to a specified directory. 

; Written By: Michael Holmes 
; Last updated: 13 July 1999 

; Declaration of variables: 
yy = " 
mmm = '' 
dd ="      ' 
mmddyyl ='' 
mmddyy2 ='' 
hhl=" 
mml ='' 
ssl ='' 
hh2=" 
mm2 ='' 
ss2 =*' 
stop_hr ='' 
stopmin ='' 

openr, 8, '96_cont.txt' 
while not(eof(8)) do begin 
readf, 8, mm, dd, yy, hhl, mml, hh2, mm2, mmm, $ 

format = '(a2, lx, a2, lx, a2, lx, a2, lx, a2, 4x, a2, lx, a2, 4x, a3)' 

; These commands insure that hh and mm are always two digets 
; i.e., hh=07, mm=10,.... 
num = strcompress(sindgen(100), /remove_all) 
num(0:9) = '0'+num(0:9) 
months = mmm 
years = yy 
days = dd 

; This portion fixes the number of digits to certian variables, 
dd = fix(dd) 
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mm = fix(mm) 
hl = fix(hhl) 
ml = fix(mml) 
stop_hr = fix(hh2) 
stop_min = fix(mm2) 
h2 = fix(hhl) 
min_int= 10 
print, mm, dd, yy, hhl, mml, hh2, mm2, mmm 
m2 = ml+min_int 

if (ml GE 50) then begin 
h2 = h2+l 
m2 = 0 

endif 
count = mml/10 
print, 'count =',count 
done = ((hi EQ stophr) and (ml EQ stop min)) 
while not(done) do begin 
dates=[num(mm) +'/'+ num(dd) +'/'+ yy + " + num(hl) +':'+ num(ml) +*:'+ '00', 
num(mm) +'/'+ num(dd) +'/'+ yy + " + num(h2) +':'+ num(m2) +':'+ '00'] 

inpath = '/home/fujital2/flash/lghl9' 
files = inpath + years + '/' + months + years + Ugh' 
print, dates 
findtime, dates, startind, startpos, lastind, lastpos, files, 11L 
currentind = startind 
currentpos = startpos 
done = ((currentind GE lastind) AND (currentpos GE lastpos)) 
region = [25.0, 50.0, -125.0, -67.0] 
nflashes=0 
f=getchunk(files,startind,stoppos,lastind,lastpos,region,currentind,currentpos,HL, 
50000) 
print, nelements(f) 
nflashes = n_elements(f)/l 1 
print, nflashes 
if (nflashes EQ 0) then goto, fwd 

dfile = mmm + num(dd) + num(yy) +'_' + num(hl) + num(ml) + '_' + 
num(h2) + num(m2) 
f =exp_lgh(f) 
help, f, /structure 
print, n_elements(f) 
map_set, 0, -100, 0, limit = [26, -83, 30, -78], /usa, /lambert, color=255, 
/noborder, $ 
title = dfile 
plots, f.lon, flat, psym = 3, color = 255 
write_gif, '/home/fujita8/gif/96_plots/' + dfile+'.gif, TVRD() 

fwd: ml = ml + min int 
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m2 = ml + min_int 
if (ml EQ 60) then begin 

m2 = ml - 50 
endif 

if ((ml GE 50) AND (ml LT 60)) then begin 
h2 = h2+l 
m2 = 0 

endif 
count = count + 1 
if (count EQ 6) then begin 

hl=hl+l 
count = 0 
ml=0 

endif 
print, hi, stophr 
print, ml, stop_min 

done = ((hi EQ stop_hr) and (ml EQ stopmin)) 
endwhile 

wdelete 
wait, 1 
endwhile 
close, 8 
end 
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APPENDIX C 

IDL PROGRAM THAT GENERATES A TIME SERIES PLOT OF A 
THUNDERSTORM 

pro master_xy_gif_plot 

; This program was written to generate an x, y time series plot 
; of peak absolute current, peak cumulative flash rate, peak negative 
; flash rate, and peak positive flash rate. It also generates a plot 
; of lightning flashes and writes them as gif files to a specified directory. 
; You will be prompted to select the 25 nmi range circle, then a rectangular 
; region of interest to plot NLDN data over. 

; Written By: Micheal Holmes 
; Last updated: 23 Oct 1999 

; Declaration of variables: 

yy = " 
mmm ='' 
dd=" 
mmddyyl ='' 
mmddyy2 ='' 
hhl=" 
mml ='' 
ssl ='' 
hh2=" 
mm2 ='' 
ss2 ='' 
stophr ='' 
stop_min - ' 

; These commands insure that hh and mm are always two digets 
; i.e., hh=07, mm=10,.... 
num = strcompress(sindgen(100), /remove_all) 
num(0:9) = '0'+num(0:9) 

; This portion of the program prompts the user for the dates 
; and times for which to generate gif images, 
print, 'please enter the year (yy)' 

read, PROMPT='yy:', yy, format='(a2)' 
print, 'please enter the month (mmm)' 
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read, PROMPT='mmm:', mmm, format='(a3)' 

print, 'please enter the day (dd)' 
read, PROMPT='dd:', dd, format='(a2)' 

years = yy 
months = mmm 
days = dd 
print, 'Please enter initial date (mm/dd/yy)' 

read, Prompt-mmddyy:', mmddyyl, format='(a9)' 
print, 'Please enter initial hour (hh)' 

read, Prompt-hh:',hhl, format='(a2)' 
print, 'Please enter initial min (mm)' 

read, Prompt='mm:',mml, format='(a2)' 
print, 'Please enter final date (mm/dd/yy)' 

read, Prompt-mmddyy:', mmddyy2, format-(a9)' 
print, 'Please enter final hour (hh)' 

read, Prornpt='hh:',hh2, format='(a2)' 
print, 'Please enter final min (mm)' 

read, Prompt='mm:',mm2, format='(a2)' 

test = increment(hhl, hh2, mml, mm2, nx) ; This portion calculates the number 
of 5 min increments. 
print, nx 
hi = fix(hhl) ; This portion fixes the number of 
digits to certian variables. 
ml = fix(mml) 
stopjir = fix(hh2) 
stopmin = fix(mm2) 
h2 = fix(hhl) 
Datelegend = mmm + num(dd) + num(yy) + '_' + num(hl) + num(ml) + '_' + 
num(stophr) + num(stop_min) 
read_gif, 'kxmr3.gif, img, r,g,b ; This portion picks the region in 
which to grab data. 
tvlct, r,g,b,0 
tvlct, 0, 0, 0,     19      ;black 
tvlct, 180,180,255, 15 
tvlct, 255,200,255, 16 ;lightblue 
tvlct, 210,210,210, 17 
tvlct, 255,255,255, 18 ;white 
a= size(img) 
window, xsize=a(l), ysize=a(2) 
tv, img 
print, 'Select 25 nm North radial' 
cursor, x,y, /up, /device 

y_adj = (y-(a(2)/2))/(25* 1.852) 
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i = 0 
done = (i EQ 2) 
while not(done) do begin ; Select rectangular region of 
interest 

; beginning with NW, then 
SE corner. 

cursor, x,y, /up, /device 
xnew = x-(a(l)/2) 
ynew = y-(a(2)/2) 
Lon_latO = [-1.4078, .4907] 
Az = atan(xnew,ynew) 
Arc_dist = ((ynew/y_adj)/(cos(Az))/6371) 
coordinates = LL_arc_distance(Lon_latO, Arcdist, Az) 
deg_coord = coordinates *(180/!pi) 
if(iEQO) then begin 

NJat = coordinates(l)*180/!pi 
W_lon = coordinates(O)* 180/!pi 
x min = x 
y_max = y 
print,'NLAT,Wlon=', N_lat, Wlon, y max, x min 

endif 

if (i EQ 1) then begin 
S_lat = coordinates(l)*180/!pi 
Elon = coordinates(0)*180/!pi 
xmax = x 
y_min = y 
print, 'SLAT/Elon-, S_lat, E_lon, y_min, x_max 

endif 
i=i+l 
done = (i EQ 2) 

endwhile 

min_int= 5 
m2 = ml+min_int 

if (ml GE 55) then begin       ; Start rime loop. 
h2 = h2+l 
m2 = 0 

endif 
count = mm 1/5 
flash_total = 0 
maxflash=0 
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maxpcount=0 
max_peak_tot=0 
maxncount=0 

max_time = fltarr(nx) 
maxjpeak = fltarr(nx) 
pk flash rate = fltarr(nx) 
pk_pos_flash_rate = fltarr(nx) 
pk_neg_flash_rate = fltarr(nx) 
max_time_flash = fltarr(nx) 
max time flash tot = fltarr(nx) 
max time flash_pos = fltarr(nx) 
max_time_flash_neg = fltarr(nx) 
last_flash = fltarr(nx) 
maxJime_peak = fltarr(nx) 
i=0 
j=0 
done = ((hi EQ stop_hr) and (ml EQ stop_min)) 
while not(done) do begin 

dates=[mmddyyl + " + num(hl) +':'+ num(ml) +':'+ '00', mmddyy2 + " + 
num(h2) +':'+ num(m2) +':'+ '00'] 

dfile = mmm + num(dd) + num(yy) + '_' + 'storm2' + '_' + num(hl) + num(ml) + 
'_' + num(h2) + num(m2) 
; dfile = mmm + num(dd) + num(yy) + '_' + num(hl) + num(ml) + '_' + num(h2) + 
num(m2) 

print, dates 
inpath = 7home/fujital2/flash/lghl9' 
files = inpath + years +'/' + months + years + Ugh' 
findtime, dates, startind, startpos, lastind, lastpos, files, 11L 
currentind = startind 
currentpos = startpos 
done = ((currentind GE lastind) AND (currentpos GE lastpos)) 
region = [S_lat, N_lat, W_lon, EJon] 
nflashes=0 
f=getchunk(files,startind,stoppos,lastind,lastpos,region,currentind,currentpos,HL, 
50000) 
nflashes = n_elements(f)/l 1 
flash_total = flashtotal + nflashes 
pk_flash_rate(j )=nflashes 
if (nflashes EQ 0) then goto, fwd 

f =expjgh(f) 
map_set, 0,-100 ,0, limit=[S_lat, W_lon, NJat, EJon], $ 
/usa, /lambert, color=19, /noborder 
map_continents, hires=l, /coasts, color=255 
map_continents, /rivers, hires=4, color=255 
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pos - where(f.peak GT 0.0, pcount) 
neg = where(f.peak LT 0.0, ncount) 
max_pk = max(abs(f.peak)) 
max_hr = f(nflashes-l).hour 
maxminute = f(nflashes-l).minute 
max_second = f(nflashes-l). second 
time = (float(f.hour)*60) + float(f.minute) + (float(f.second)/60) 
max_time(i) = time(where(abs(f.peak) EQ max_pk)) 
maxjpeak(i) = max_pk 
last_flash(i) = max_hr*60.0 + max_minute*1.0 + max_second/60.0 

if (max_pk GE max_peak_tot) then begin 
max_peak_tot = max_pk 
max_time_peak(i) = max_time(i) 

endif 
i=i+l 
if (nflashes GT maxfiash) then begin 

maxfiash = nflashes 
max_time_fiash_tot(j) = time(where(nfiashes EQ maxfiash)) 

endif 

if (pcount GT maxpcount) then begin 
maxpcount = pcount 
max_time_flash_pos(j)=time(where(pcount EQ maxpcount)) 

endif 

if (ncount GT maxncount) then begin 
maxncount = ncount 
max_time_flash_neg(j)=time(where(ncount EQ maxncount)) 

endif 

maxtime flash(j) = time(where(nfiashes EQ nflashes)) 
pk_pos_flash_rate(j)=pcount 
pk_neg_flash_rate(j )=ncount 
print, nflashes, pk flash_rate(j), pk_pos_flash_rate(j), 
pk_neg_flash_rate(j) 
print, max_time_flash_tot(j), max_time_flash_pos(j), 
max_time_flash_neg(j) 
j=j+l 
if (ncount EQ 0) then begin 

ratio = TNF 
endif 
if (ncount NE 0) then begin 

ratio = pcount* 1.0/ncount* 1.0 
endif 
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print,' Number of total flashes = ',flash_total 
print,' Number of posative flashes = ',pcount 
print,' Number of negative flashes = ',ncount 
print,' Peak Current = ',max(abs(f.peak)) 
pkcurr =(max_peak)* 1.0 
if (pcount EQ 0) then begin 

print,' Max Pos Curr = no pos flashes' 
Maxjpos_curr = 'no pos flashes' 

Endif 

if (pcount NE 0) then begin 
print,' Max Pos Curr = ',max(f(pos).peak) 
Max_pos_curr = max(f(pos).peak) 

endif 

print,' Last Flash = ', maxhr, max_minute, maxsecond 
print,' Ratio = ', ratio 
plots, f.lon, flat, psym = 3, color = 255 
plots, f(nflashes-l).lon, f(nflashes-l).lat, psym = 2, color = 255, 
symsize=l 

XYOUTS,0.5, .97, 'Date'+string(dfile)+'    ', CHARSIZE=1,/Normal, $ 
alignment= 1, color=25 5 
XYOUTS,0.5, .97, 'Flashes'+string(nflashes), CHARSIZE=1,/Normal, $ 
alignment=0, color=255 
XYOUTS,0.5, .94, 'Storm Tot Flashes'+string(ftash_total), $ 
CHARSIZE=1,/Normal, alignments, color=255 
XYOUTS,0.5, .91, "Peak Curr'+string(max_peak_tot), $ 
CHARSIZE=1,/Normal, alignments, color=255 
XYOUTS,0.5, .88,' Max Pos Curr = '+string(Max_pos_curr), $ 
CHARSIZE=1,/Normal, alignments, color=255 $ 
XYOUTS,0.5, .85, 'Last 
Flash'+string(max_hr)+string(max_minute)+string(max_second), $ 
CHARSIZE=1,/Normal, alignments, color=255 
XYOUTS,0.5, .82,' Ratio = *+ string(ratio), CHARSIZE=1,/Normal, $ 
alignments, color=255 
write_gif, '/home/fujita8/gif7cases/last_flash/' + dfile+'.gif, TVRD() 

fwd: ml = ml + min_int 
m2 = ml + minint 
if (ml EQ 60) then begin 

m2 = ml - 55 
endif 

if ((ml GE 55) AND (ml LT 60)) then begin 
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h2 = h2 +1 
m2 = 0 

endif 
count = count + 1 

if (count EQ 12) then begin 
hl=hl+l 
count = 0 
ml=0 

endif 
done = ((hi EQ stophr) and (ml EQ stop_min)) 

openu, outfilel, '/home/kramerl/users/mholmes/thesis/text_output/'+Date_legend+'.txt', $ 
/get_lun, /append 

printf, outfilel, dfile, max(last_flash), fiashjotal, max(max_peak), $ 
max(max_time_peak), $ 

max(pk_flash_rate), max(max_time_flash_tot), max(pk_pos_flash_rate), $ 
max(max_time flash_pos), max(pk_neg_fiash_rate), max(max_time_flash_neg) 

close, outfilel 
free_lun, outfilel 
endwhile 
wdelete 
wait, 2 
plot, max_time, max_peak, /ynozero, color=255, $ 

xrange=[last_flash(0)-5, max(last_flash)+5], $ 
subtitle-Date      '+string(Date_legend), backgrounds 9, $ 
ytitle = 'Peak Currents V/m', min_value=l, $ 
xstyle=8, ystyle=8, $ 
xmargin=[8,8], ymargin=[4,4] 
plots, max(max_time_peak), max(max_peak), color=255, psym=2, symsize=l 
xyouts, max(max_time_peak), max(max_peak), max(max_timejpeak), $ 

color=255, alignment=.5, charsize=1.5 
axis, yaxis=l, yrange=[0, max(pk_flash_rate)+10], $ 
ystyle=l, ytitle-Peak Flash Rate per 5min', color=255, /save 

oplot, max_time_flash, pkflashrate, linestyle=2, color=255, min_value=l 
oplot, max_time_flash, pk_pos_flash_rate, linestyle=3, color=255, min_value=l 
oplot, maxtimeflash, pk_neg_flash_rate, linestyle=l, color=255, min_value=l 
xyouts, max(max_time_flash_tot), max(pk_flash_rate), max(max_time_flash_tot), $ 

color=255, alignment=.5, charsize=1.5 
plots, max(max_time_flash_tot), max(pk_flash_rate), psym=2, color=255, symsize=l 
xyouts, max(max_time_flash_pos), max(pk_pos_flash_rate), max(max_time_flash_pos), 
$ color=255, alignments5, charsize=1.5 
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plots, max(max_time_flash_pos), max(pk_pos_flash_rate), psym=2, color=255, $ 
symsize=l 
xyouts, max(max_time_flash_neg), max(pk_neg_flash_rate), max(max_time_flash_neg), 
$ color=255, alignment=.5, charsize=1.5 
plots, max(max_time_flash_neg), max(pk_neg_flash_rate), psym=2, color=255, $ 
symsize=l 
xyouts, max(last_flash), 0, max(last_flash), color=255, alignment=.5, charsize=1.5 $ 
plots, max(last_flash), 0, psym=2, color=255, symsize=l 

write_gif, Vhome/fujita8/gif/cases/xyjplots/' + Date_legend +'_xy'+'.gif, $ 
TVRD() 
wait, 2 
openu, outfile2, '/home/kramerl/users/mholmes/thesis/text_output/master_flash.txt,, $ 
/get_lun, /append 

print, 'Date: ' +''+ 'Last Flash:' +''+ 'Tot Flashes:' +' '+'Pk Cur:' +''+ 'T Pk $ 
Cur:'+''+ Tk Flash Rt:' +' '+'T Pk Flash Rt:' +''+ 'Pk + Flash Rt:' +''+ 'T Pk + Flash $ 
Rt:'+''+ 'Pk - Flash Rt:' +"+ 'T Pk - Flash Rt:' 

print, Date_legend, max(lastflash), flashtotal, max(max_peak), max(max_time_peak), 
$ max(pk_flash_rate), max(max_time_flash_tot/60), max(pkjpos_flash_rate), $ 
max(max_time_flashjpos), max(pk_neg_flash_rate), max(max_time_flash_neg) 

printf, outfile2, Date_legend, max(last_flash), flash_total, max(max_peak), $ 
max(max_time_peak), max(pk flash_rate), max(max_time_flash_tot), $ 
max(pkjpos_flash_rate), max(max_time_flash_pos), max(pk_neg_flash_rate), $ 
max(max_time_flash_neg) 

close, outfile2 
free_lun, outfile2 
end 
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